Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Immunol Methods ; 517: 113488, 2023 06.
Article in English | MEDLINE | ID: covidwho-2313902

ABSTRACT

The levels of immune response to SARS-CoV-2 infection or vaccination are poorly understood in African populations and is complicated by cross-reactivity to endemic pathogens as well as differences in host responsiveness. To begin to determine the best approach to minimize false positive antibody levels to SARS-CoV-2 in an African population, we evaluated three commercial assays, namely Bio-Rad Platelia SARS-CoV-2 Total Antibody (Platelia), Quanterix Simoa Semi-Quantitative SARS-CoV-2 IgG Antibody Test (anti-Spike), and the GenScript cPass™ SARS-CoV-2 Neutralization Antibody Detection Kit (cPass) using samples collected in Mali in West Africa prior to the emergence of SARS-CoV-2. A total of one hundred samples were assayed. The samples were categorized in two groups based on the presence or absence of clinical malaria. Overall, thirteen out of one hundred (13/100) samples were false positives with the Bio-Rad Platelia assay and one of the same one hundred (1/100) was a false positive with the anti-Spike IgG Quanterix assay. None of the samples tested with the GenScript cPass assay were positive. False positives were more common in the clinical malaria group, 10/50 (20%) vs. the non-malaria group 3/50 (6%); p = 0.0374 using the Bio-Rad Platelia assay. Association between false positive results and parasitemia by Bio-Rad remained evident, after adjusting for age and sex in multivariate analyses. In summary, the impact of clinical malaria on assay performance appears to depend on the assay and/or antigen being used. A careful evaluation of any given assay in the local context is a prerequisite for reliable serological assessment of anti-SARS-CoV-2 humoral immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Antibodies, Viral , Biological Assay , Black People , Sensitivity and Specificity
3.
N Engl J Med ; 383(19): 1813-1826, 2020 11 05.
Article in English | MEDLINE | ID: covidwho-2292084

ABSTRACT

BACKGROUND: Although several therapeutic agents have been evaluated for the treatment of coronavirus disease 2019 (Covid-19), no antiviral agents have yet been shown to be efficacious. METHODS: We conducted a double-blind, randomized, placebo-controlled trial of intravenous remdesivir in adults who were hospitalized with Covid-19 and had evidence of lower respiratory tract infection. Patients were randomly assigned to receive either remdesivir (200 mg loading dose on day 1, followed by 100 mg daily for up to 9 additional days) or placebo for up to 10 days. The primary outcome was the time to recovery, defined by either discharge from the hospital or hospitalization for infection-control purposes only. RESULTS: A total of 1062 patients underwent randomization (with 541 assigned to remdesivir and 521 to placebo). Those who received remdesivir had a median recovery time of 10 days (95% confidence interval [CI], 9 to 11), as compared with 15 days (95% CI, 13 to 18) among those who received placebo (rate ratio for recovery, 1.29; 95% CI, 1.12 to 1.49; P<0.001, by a log-rank test). In an analysis that used a proportional-odds model with an eight-category ordinal scale, the patients who received remdesivir were found to be more likely than those who received placebo to have clinical improvement at day 15 (odds ratio, 1.5; 95% CI, 1.2 to 1.9, after adjustment for actual disease severity). The Kaplan-Meier estimates of mortality were 6.7% with remdesivir and 11.9% with placebo by day 15 and 11.4% with remdesivir and 15.2% with placebo by day 29 (hazard ratio, 0.73; 95% CI, 0.52 to 1.03). Serious adverse events were reported in 131 of the 532 patients who received remdesivir (24.6%) and in 163 of the 516 patients who received placebo (31.6%). CONCLUSIONS: Our data show that remdesivir was superior to placebo in shortening the time to recovery in adults who were hospitalized with Covid-19 and had evidence of lower respiratory tract infection. (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTT-1 ClinicalTrials.gov number, NCT04280705.).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/therapeutic use , Administration, Intravenous , Adult , Aged , Alanine/administration & dosage , Alanine/adverse effects , Alanine/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Double-Blind Method , Extracorporeal Membrane Oxygenation , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Oxygen Inhalation Therapy , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Respiration, Artificial , SARS-CoV-2 , Time Factors , Young Adult , COVID-19 Drug Treatment
4.
Front Immunol ; 14: 1130821, 2023.
Article in English | MEDLINE | ID: covidwho-2299747

ABSTRACT

Introduction: There remains a need to better identify patients at highest risk for developing severe Coronavirus Disease 2019 (COVID-19) as additional waves of the pandemic continue to impact hospital systems. We sought to characterize the association of receptor for advanced glycation end products (RAGE), SARS-CoV-2 nucleocapsid viral antigen, and a panel of thromboinflammatory biomarkers with development of severe disease in patients presenting to the emergency department with symptomatic COVID-19. Methods: Blood samples were collected on arrival from 77 patients with symptomatic COVID-19, and plasma levels of thromboinflammatory biomarkers were measured. Results: Differences in biomarkers between those who did and did not develop severe disease or death 7 days after presentation were analyzed. After adjustment for multiple comparisons, RAGE, SARS-CoV-2 nucleocapsid viral antigen, interleukin (IL)-6, IL-10 and tumor necrosis factor receptor (TNFR)-1 were significantly elevated in the group who developed severe disease (all p<0.05). In a multivariable regression model, RAGE and SARS-CoV-2 nucleocapsid viral antigen remained significant risk factors for development of severe disease (both p<0.05), and each had sensitivity and specificity >80% on cut-point analysis. Discussion: Elevated RAGE and SARS-CoV-2 nucleocapsid viral antigen on emergency department presentation are strongly associated with development of severe disease at 7 days. These findings are of clinical relevance for patient prognostication and triage as hospital systems continue to be overwhelmed. Further studies are warranted to determine the feasibility and utility of point-of care measurements of these biomarkers in the emergency department setting to improve patient prognostication and triage.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Receptor for Advanced Glycation End Products , Nucleocapsid , Antigens , Biomarkers , Antigens, Viral
5.
Am J Respir Crit Care Med ; 206(6): 730-739, 2022 09 15.
Article in English | MEDLINE | ID: covidwho-2257568

ABSTRACT

Rationale: Uncertainty regarding the natural history of coronavirus disease (COVID-19) led to difficulty in efficacy endpoint selection for therapeutic trials. Capturing outcomes that occur after hospital discharge may improve assessment of clinical recovery among hospitalized patients with COVID-19. Objectives: Evaluate 90-day clinical course of patients hospitalized with COVID-19, comparing three distinct definitions of recovery. Methods: We used pooled data from three clinical trials of neutralizing monoclonal antibodies to compare: 1) the hospital discharge approach; 2) the TICO (Therapeutics for Inpatients with COVID-19) trials sustained recovery approach; and 3) a comprehensive approach. At the time of enrollment, all patients were hospitalized in a non-ICU setting without organ failure or major extrapulmonary manifestations of COVID-19. We defined discordance as a difference between time to recovery. Measurements and Main Results: Discordance between the hospital discharge and comprehensive approaches occurred in 170 (20%) of 850 enrolled participants, including 126 hospital readmissions and 24 deaths after initial hospital discharge. Discordant participants were older (median age, 68 vs. 59 years; P < 0.001) and more had a comorbidity (84% vs. 70%; P < 0.001). Of 170 discordant participants, 106 (62%) had postdischarge events captured by the TICO approach. Conclusions: Among patients hospitalized with COVID-19, 20% had clinically significant postdischarge events within 90 days after randomization in patients who would be considered "recovered" using the hospital discharge approach. Using the TICO approach balances length of follow-up with practical limitations. However, clinical trials of COVID-19 therapeutics should use follow-up times up to 90 days to assess clinical recovery more accurately.


Subject(s)
COVID-19 , Aftercare , Aged , Antibodies, Monoclonal , Humans , Patient Discharge , SARS-CoV-2 , Treatment Outcome
6.
IJID Reg ; 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2242278

ABSTRACT

Background: Emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may contribute to prolonging the pandemic and increasing morbidity, and mortality related to coronavirus disease 2019 (COVID-19). We describe the dynamics of circulating SARS-CoV-2 variants identified during the different COVID-19 waves that occurred in Mali between April 2021 and October 2021. Methods: We sequenced respiratory SARS-CoV-2 complete spike (S) gene from positive samples. Generated sequences were aligned by Variant Reporter v3.0 using Wuhan-1 strain as a reference. Mutations were noted using the GISAID and Nextclade platforms. Results: Of 16,797 nasopharyngeal swab samples tested, 6.0 % (1008/16,797) were RT-qPCR positive for SARS-CoV-2. Of these, 16.07% (162/1008) had a Ct value ≤ 28 and were amplified and sequenced. We recovered complete S-gene sequence from 80 of 162 [49.8%] samples. We identified seven distinct variants including Delta [62.5%], Alpha [1.2%], Beta [1.2%], Eta [30.0%], 20B [2.5%], 19B and 20A [1.2% each]. Conclusion and perspectives: Our results show the presence of several SARS-CoV-2 variants during COVID-19 waves in Mali between April and October 2021. The continued emergence of new variants highlights the need to strengthen local real-time sequencing capacity, and genomic surveillance for better and coordinated national responses to SARS-CoV-2.

7.
Ann Intern Med ; 175(10): 1401-1410, 2022 10.
Article in English | MEDLINE | ID: covidwho-2080840

ABSTRACT

BACKGROUND: Levels of plasma SARS-CoV-2 nucleocapsid (N) antigen may be an important biomarker in patients with COVID-19 and enhance our understanding of the pathogenesis of COVID-19. OBJECTIVE: To evaluate whether levels of plasma antigen can predict short-term clinical outcomes and identify clinical and viral factors associated with plasma antigen levels in hospitalized patients with SARS-CoV-2. DESIGN: Cross-sectional study of baseline plasma antigen level from 2540 participants enrolled in the TICO (Therapeutics for Inpatients With COVID-19) platform trial from August 2020 to November 2021, with additional data on day 5 outcome and time to discharge. SETTING: 114 centers in 10 countries. PARTICIPANTS: Adults hospitalized for acute SARS-CoV-2 infection with 12 days or less of symptoms. MEASUREMENTS: Baseline plasma viral N antigen level was measured at a central laboratory. Delta variant status was determined from baseline nasal swabs using reverse transcriptase polymerase chain reaction. Associations between baseline patient characteristics and viral factors and baseline plasma antigen levels were assessed using both unadjusted and multivariable modeling. Association between elevated baseline antigen level of 1000 ng/L or greater and outcomes, including worsening of ordinal pulmonary scale at day 5 and time to hospital discharge, were evaluated using logistic regression and Fine-Gray regression models, respectively. RESULTS: Plasma antigen was below the level of quantification in 5% of participants at enrollment, and 1000 ng/L or greater in 57%. Baseline pulmonary severity of illness was strongly associated with plasma antigen level, with mean plasma antigen level 3.10-fold higher among those requiring noninvasive ventilation or high-flow nasal cannula compared with room air (95% CI, 2.22 to 4.34). Plasma antigen level was higher in those who lacked antispike antibodies (6.42 fold; CI, 5.37 to 7.66) and in those with the Delta variant (1.73 fold; CI, 1.41 to 2.13). Additional factors associated with higher baseline antigen level included male sex, shorter time since hospital admission, decreased days of remdesivir, and renal impairment. In contrast, race, ethnicity, body mass index, and immunocompromising conditions were not associated with plasma antigen levels. Plasma antigen level of 1000 ng/L or greater was associated with a markedly higher odds of worsened pulmonary status at day 5 (odds ratio, 5.06 [CI, 3.41 to 7.50]) and longer time to hospital discharge (median, 7 vs. 4 days; subhazard ratio, 0.51 [CI, 0.45 to 0.57]), with subhazard ratios similar across all levels of baseline pulmonary severity. LIMITATIONS: Plasma samples were drawn at enrollment, not hospital presentation. No point-of-care test to measure plasma antigen is currently available. CONCLUSION: Elevated plasma antigen is highly associated with both severity of pulmonary illness and clinically important patient outcomes. Multiple clinical and viral factors are associated with plasma antigen level at presentation. These data support a potential role of ongoing viral replication in the pathogenesis of SARS-CoV-2 in hospitalized patients. PRIMARY FUNDING SOURCE: U.S. government Operation Warp Speed and National Institute of Allergy and Infectious Diseases.


Subject(s)
COVID-19 , Adult , COVID-19/therapy , Cross-Sectional Studies , Humans , Male , Nucleocapsid , SARS-CoV-2
8.
Front Med (Lausanne) ; 9: 906469, 2022.
Article in English | MEDLINE | ID: covidwho-2080171

ABSTRACT

Background: Reinfection with SARS-CoV-2 has been well documented, yet little is known about the degree of protection a previous infection provides against reinfection, especially against Variants of Concern (VOC). Case presentation: Here we describe a case of an unvaccinated 49-year-old man who experienced two sequential SARS-CoV-2 infections with two different variants, as evidenced by genomic sequencing. The first episode was caused by the Pango lineage B.1.466.2 and resulted in severe COVID-19 with 5 days in an intensive care unit (ICU). The second episode occurred approximately 6 months later, during the Delta surge in Indonesia. Genomic analysis showed that the second infection was caused by the Delta variant (Pango lineage B.1.617.2) and resulted in mild disease that did not require hospitalization. No SARS-CoV-2 nucleic acid was detected between the two episodes, but both binding and neutralizing antibodies to SARS-CoV-2 were detected prior to the reinfection, with the second infection leading to an increase in the levels of antibody. Conclusion: We confirmed that the patient experienced a reinfection instead of persistent viral shedding from the first infection based on epidemiological, clinical, serological, and genomic analyses. Our case supports the hypothesis that SARS-CoV-2 reinfection may occur once antibody titers decrease or following the emergence of a new variant. The milder presentation in the patient's second infection deserves further investigation to provide a clear picture of the role of post-infection immunity in altering the course of subsequent disease.

9.
Crit Care ; 26(1): 278, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2029727

ABSTRACT

BACKGROUND: Studies quantifying SARS-CoV-2 have focused on upper respiratory tract or plasma viral RNA with inconsistent association with clinical outcomes. The association between plasma viral antigen levels and clinical outcomes has not been previously studied. Our aim was to investigate the relationship between plasma SARS-CoV-2 nucleocapsid antigen (N-antigen) concentration and both markers of host response and clinical outcomes. METHODS: SARS-CoV-2 N-antigen concentrations were measured in the first study plasma sample (D0), collected within 72 h of hospital admission, from 256 subjects admitted between March 2020 and August 2021 in a prospective observational cohort of hospitalized patients with COVID-19. The rank correlations between plasma N-antigen and plasma biomarkers of tissue damage, coagulation, and inflammation were assessed. Multiple ordinal regression was used to test the association between enrollment N-antigen plasma concentration and the primary outcome of clinical deterioration at one week as measured by a modified World Health Organization (WHO) ordinal scale. Multiple logistic regression was used to test the association between enrollment plasma N-antigen concentration and the secondary outcomes of ICU admission, mechanical ventilation at 28 days, and death at 28 days. The prognostic discrimination of an externally derived "high antigen" cutoff of N-antigen ≥ 1000 pg/mL was also tested. RESULTS: N-antigen on D0 was detectable in 84% of study participants. Plasma N-antigen levels significantly correlated with RAGE (r = 0.61), IL-10 (r = 0.59), and IP-10 (r = 0.59, adjusted p = 0.01 for all correlations). For the primary outcome of clinical status at one week, each 500 pg/mL increase in plasma N-antigen level was associated with an adjusted OR of 1.05 (95% CI 1.03-1.08) for worse WHO ordinal status. D0 plasma N-antigen ≥ 1000 pg/mL was 77% sensitive and 59% specific (AUROC 0.68) with a positive predictive value of 23% and a negative predictive value of 93% for a worse WHO ordinal scale at day 7 compared to baseline. D0 N-antigen concentration was independently associated with ICU admission and 28-day mechanical ventilation, but not with death at 28 days. CONCLUSIONS: Plasma N-antigen levels are readily measured and provide important insight into the pathogenesis and prognosis of COVID-19. The measurement of N-antigen levels early in-hospital course may improve risk stratification, especially for identifying patients who are unlikely to progress to severe disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleocapsid , RNA, Viral
11.
Med (N Y) ; 3(8): 531-537, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1983656

ABSTRACT

The protection provided by natural versus hybrid immunity from COVID-19 is unclear. We reflect on the challenges from trying to conduct a randomized post-SARS-CoV-2 infection vaccination trial study with rapidly evolving scientific data, vaccination guidelines, varying international policies, difficulties with vaccine availability, vaccine hesitancy, and a constantly evolving virus.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccination , COVID-19/prevention & control , COVID-19/therapy , Humans , Inpatients , Randomized Controlled Trials as Topic , Vaccination/methods
12.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1980640

ABSTRACT

Background Reinfection with SARS-CoV-2 has been well documented, yet little is known about the degree of protection a previous infection provides against reinfection, especially against Variants of Concern (VOC). Case presentation Here we describe a case of an unvaccinated 49-year-old man who experienced two sequential SARS-CoV-2 infections with two different variants, as evidenced by genomic sequencing. The first episode was caused by the Pango lineage B.1.466.2 and resulted in severe COVID-19 with 5 days in an intensive care unit (ICU). The second episode occurred approximately 6 months later, during the Delta surge in Indonesia. Genomic analysis showed that the second infection was caused by the Delta variant (Pango lineage B.1.617.2) and resulted in mild disease that did not require hospitalization. No SARS-CoV-2 nucleic acid was detected between the two episodes, but both binding and neutralizing antibodies to SARS-CoV-2 were detected prior to the reinfection, with the second infection leading to an increase in the levels of antibody. Conclusion We confirmed that the patient experienced a reinfection instead of persistent viral shedding from the first infection based on epidemiological, clinical, serological, and genomic analyses. Our case supports the hypothesis that SARS-CoV-2 reinfection may occur once antibody titers decrease or following the emergence of a new variant. The milder presentation in the patient’s second infection deserves further investigation to provide a clear picture of the role of post-infection immunity in altering the course of subsequent disease.

13.
JCI Insight ; 7(9)2022 05 09.
Article in English | MEDLINE | ID: covidwho-1868830

ABSTRACT

BackgroundThe value of the soluble receptor for advanced glycation end-products (sRAGE) as a biomarker in COVID-19 is not well understood. We tested the association between plasma sRAGE and illness severity, viral burden, and clinical outcomes in hospitalized patients with COVID-19 who were not mechanically ventilated.MethodsBaseline sRAGE was measured among participants enrolled in the ACTIV-3/TICO trial of bamlanivimab for hospitalized patients with COVID-19. Spearman's rank correlation was used to assess the relationship between sRAGE and other plasma biomarkers, including viral nucleocapsid antigen. Fine-Gray models adjusted for baseline supplemental oxygen requirement, antigen level, positive endogenous anti-nucleocapsid antibody response, sex, age, BMI, diabetes mellitus, renal impairment, corticosteroid treatment, and log2-transformed IL-6 level were used to assess the association between baseline sRAGE and time to sustained recovery. Cox regression adjusted for the same factors was used to assess the association between sRAGE and mortality.ResultsAmong 277 participants, baseline sRAGE was strongly correlated with viral plasma antigen concentration (ρ = 0.57). There was a weaker correlation between sRAGE and biomarkers of systemic inflammation, such as IL-6 (ρ = 0.36) and CRP (ρ = 0.20). Participants with plasma sRAGE in the highest quartile had a significantly lower rate of sustained recovery (adjusted recovery rate ratio, 0.64 [95% CI, 0.43-0.90]) and a higher unadjusted risk of death (HR, 4.70 [95% CI, 2.01-10.99]) compared with participants in the lower quartiles.ConclusionElevated plasma sRAGE in hospitalized, nonventilated patients with COVID-19 was an indicator of both clinical illness severity and plasma viral load. Plasma sRAGE in the highest quartile was associated with a lower likelihood of sustained recovery and higher unadjusted risk of death. These findings, which we believe to be novel, indicate that plasma sRAGE may be a promising biomarker for COVID-19 prognostication and clinical trial enrichment.Trial RegistrationClinicalTrials.gov NCT04501978.FundingNIH (5T32GM008440-24, 18X107CF6, HHSN261201500003I, R35HL140026, and OT2HL156812).


Subject(s)
COVID-19 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Biomarkers , Humans , Interleukin-6 , Prognosis , Receptor for Advanced Glycation End Products
14.
Ann Intern Med ; 175(7): 969-979, 2022 07.
Article in English | MEDLINE | ID: covidwho-1863261

ABSTRACT

BACKGROUND: A substantial proportion of persons who develop COVID-19 report persistent symptoms after acute illness. Various pathophysiologic mechanisms have been implicated in the pathogenesis of postacute sequelae of SARS-CoV-2 infection (PASC). OBJECTIVE: To characterize medical sequelae and persistent symptoms after recovery from COVID-19 in a cohort of disease survivors and controls. DESIGN: Cohort study. (ClinicalTrials.gov: NCT04411147). SETTING: National Institutes of Health Clinical Center, Bethesda, Maryland. PARTICIPANTS: Self-referred adults with laboratory-documented SARS-CoV-2 infection who were at least 6 weeks from symptom onset were enrolled regardless of presence of PASC. A control group comprised persons with no history of COVID-19 or serologic evidence of SARS-CoV-2 infection, recruited regardless of their current health status. Both groups were enrolled over the same period and from the same geographic area. MEASUREMENTS: All participants had the same evaluations regardless of presence of symptoms, including physical examination, laboratory tests and questionnaires, cognitive function testing, and cardiopulmonary evaluation. A subset also underwent exploratory immunologic and virologic evaluations. RESULTS: 189 persons with laboratory-documented COVID-19 (12% of whom were hospitalized during acute illness) and 120 antibody-negative control participants were enrolled. At enrollment, symptoms consistent with PASC were reported by 55% of the COVID-19 cohort and 13% of control participants. Increased risk for PASC was noted in women and those with a history of anxiety disorder. Participants with findings meeting the definition of PASC reported lower quality of life on standardized testing. Abnormal findings on physical examination and diagnostic testing were uncommon. Neutralizing antibody levels to spike protein were negative in 27% of the unvaccinated COVID-19 cohort and none of the vaccinated COVID-19 cohort. Exploratory studies found no evidence of persistent viral infection, autoimmunity, or abnormal immune activation in participants with PASC. LIMITATIONS: Most participants with COVID-19 had mild to moderate acute illness that did not require hospitalization. The prevalence of reported PASC was likely overestimated in this cohort because persons with PASC may have been more motivated to enroll. The study did not capture PASC that resolved before enrollment. CONCLUSION: A high burden of persistent symptoms was observed in persons after COVID-19. Extensive diagnostic evaluation revealed no specific cause of reported symptoms in most cases. Antibody levels were highly variable after COVID-19. PRIMARY FUNDING SOURCE: Division of Intramural Research, National Institute of Allergy and Infectious Diseases.


Subject(s)
COVID-19 , Acute Disease , Adult , COVID-19/complications , Cohort Studies , Female , Humans , Longitudinal Studies , Quality of Life , SARS-CoV-2
15.
Ann Intern Med ; 174(8): 1151-1158, 2021 08.
Article in English | MEDLINE | ID: covidwho-1481184

ABSTRACT

The development of the National Institutes of Health (NIH) COVID-19 Treatment Guidelines began in March 2020 in response to a request from the White House Coronavirus Task Force. Within 4 days of the request, the NIH COVID-19 Treatment Guidelines Panel was established and the first meeting took place (virtually-as did subsequent meetings). The Panel comprises 57 individuals representing 6 governmental agencies, 11 professional societies, and 33 medical centers, plus 2 community members, who have worked together to create and frequently update the guidelines on the basis of evidence from the most recent clinical studies available. The initial version of the guidelines was completed within 2 weeks and posted online on 21 April 2020. Initially, sparse evidence was available to guide COVID-19 treatment recommendations. However, treatment data rapidly accrued based on results from clinical studies that used various study designs and evaluated different therapeutic agents and approaches. Data have continued to evolve at a rapid pace, leading to 24 revisions and updates of the guidelines in the first year. This process has provided important lessons for responding to an unprecedented public health emergency: Providers and stakeholders are eager to access credible, current treatment guidelines; governmental agencies, professional societies, and health care leaders can work together effectively and expeditiously; panelists from various disciplines, including biostatistics, are important for quickly developing well-informed recommendations; well-powered randomized clinical trials continue to provide the most compelling evidence to guide treatment recommendations; treatment recommendations need to be developed in a confidential setting free from external pressures; development of a user-friendly, web-based format for communicating with health care providers requires substantial administrative support; and frequent updates are necessary as clinical evidence rapidly emerges.


Subject(s)
COVID-19/therapy , Pandemics , Practice Guidelines as Topic , Advisory Committees , COVID-19/epidemiology , Child , Data Interpretation, Statistical , Drug Approval , Evidence-Based Medicine , Female , Humans , Interprofessional Relations , National Institutes of Health (U.S.) , Pregnancy , SARS-CoV-2 , Stakeholder Participation , United States , COVID-19 Drug Treatment
16.
Clin Trials ; 19(1): 52-61, 2022 02.
Article in English | MEDLINE | ID: covidwho-1463193

ABSTRACT

BACKGROUND/AIMS: Safe and effective therapies for COVID-19 are urgently needed. In order to meet this need, the Accelerating COVID-19 Therapeutic Interventions and Vaccines public-private partnership initiated the Therapeutics for Inpatients with COVID-19. Therapeutics for Inpatients with COVID-19 is a multi-arm, multi-stage platform master protocol, which facilitates the rapid evaluation of the safety and efficacy of novel candidate antiviral therapeutic agents for adults hospitalized with COVID-19. Five agents have so far entered the protocol, with rapid answers already provided for three of these. Other agents are expected to enter the protocol throughout 2021. This protocol contains a number of key design and implementation features that, along with challenges faced by the protocol team, are presented and discussed. METHODS: Three clinical trial networks, encompassing a global network of clinical sites, participated in the protocol development and implementation. Therapeutics for Inpatients with COVID-19 utilizes a multi-arm, multi-stage design with an agile and robust approach to futility and safety evaluation at 300 patients enrolled, with subsequent expansion to full sample size and an expanded target population if the agent shows an acceptable safety profile and evidence of efficacy. Rapid recruitment to multiple agents is enabled through the sharing of placebo, the confining of agent-specific information to protocol appendices, and modular consent forms. In collaboration with the Food and Drug Administration, a thorough safety data collection and Data and Safety Monitoring Board schedule was developed for the study of potential therapeutic agents with limited in-human data in hospitalized patients with COVID-19. RESULTS: As of 8 August 2021, five agents have entered the Therapeutics for Inpatients with COVID-19 master protocol and a total of 1909 participants have been randomized to one of these agents or matching placebo. There were a number of challenges faced by the study team that needed to be overcome in order to successfully implement Therapeutics for Inpatients with COVID-19 across a global network of sites. These included ensuring drug supply and reliable recruitment allowing for changing infection rates across the global network of sites, the need to balance the collection of data and samples without overburdening clinical staff and obtaining regulatory approvals across a global network of sites. CONCLUSION: Through a robust multi-network partnership, the Therapeutics for Inpatients with COVID-19 protocol has been successfully used across a global network of sites for rapid generation of efficacy data on multiple novel antiviral agents. The protocol design and implementation features used in this protocol, and the approaches to address challenges, will have broader applicability. Mechanisms to facilitate improved communication and harmonization among country-specific regulatory bodies are required to achieve the full potential of this approach in dealing with a global outbreak.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Adult , Antiviral Agents/therapeutic use , Hospitalization , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Treatment Outcome
18.
N Engl J Med ; 384(8): 755-757, 2021 02 25.
Article in English | MEDLINE | ID: covidwho-1354150
SELECTION OF CITATIONS
SEARCH DETAIL